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Abstract. The thermodynamics of a system withN identical Bose particles is studied in the
diluted gas limit. Not too close to the Bose–Einstein transition we find results differing from the
ones in the literature. A relevant consequence of this work is that at low momenta the momentum
distribution of quasiparticles is not in the usual form of the Bose factor.

1. Introduction

We explore the properties of a dilute Bose gas by taking into account the effect of the interactions
and the possible existence of a condensate. This is indeed not a new topic, it has been studied
before by Bogoliubov [1] and by Huanget al in a series of papers [2–5]. A rather detailed
calculation can be found in Huang’s book on statistical mechanics [6] which, however, leaves
open the question of the order of the phase transition, once the interaction is turned on.

There are two possibilities for representing a dilute Bose gas. One may resort to a regular
perturbation method, as done by Huang, by considering the interaction as a small perturbation
and computing the first-order corrections, the unperturbed state being given by the usual
Bose–Einstein (BE) theory, without interactions. Another approach was used later by Lee
and Yang [5]. It amounts to making a Bogoliubov transformation [1] to diagonalize the
Hamiltonian by taking into account at the dominant order (i.e. not as a perturbative effect) the
interaction between particles at finite momentum and the condensate. Lee and Yang [5] have
also studied the model with a Bogoliubov spectrum, but their results differ from ours for a
reason which will be given in section 3. One interesting thing to notice is that, generally, the
effect of the Bogoliubov renormalization is to make the transition to condensation first order,
that could be perhaps compared with the experimental findings of the BE transition in atomic
vapours [7]. The neighbourhood of the transition has been studied recently in a number of
publications [8,9], but this paper is concerned with corrections far from the transition. One of
our results is to show that the momentum distribution is not given by a simple Bose factor, for
reasons explained in section 3.

That the transition is first order in those theories can be understood by the following
argument. If the density of the condensate is finite, the excitation spectrum becomes a
Bogoliubov spectrum, with a linear dependence of energy on momentum at low energies,
although energy is a quadratic function of this momentum for free particles (that is
noninteracting with the condensate). Therefore, for a given momentum, the quasiparticle
energy is larger than the free-particle energy and it is more difficult at a given temperature
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to excite thermally low-momenta quasiparticles than free particles with the same momentum.
This depletes the density of the thermal particles to the benefit of the condensate, and yields a
feedback making the transition first order.

We reconsider this question, and show that the Bogoliubov transformation is necessary
to get the correct dominant correction to the thermodynamics of a dilute BE perfect gas. In
the calculation of the thermodynamical quantities, a chemical potential must be introduced in
the spectrum of the quasiparticles, in a way differing from most previous works on this topic
(in [10] formulae rather similar to ours are presented, although with a different starting point—
see the comments after equation (9)). This calculation gives a correct first-order correction
to the thermodynamics only when the density of the condensate and of the thermal particles
are of the same order of magnitude. It fails when the density of the condensate becomes so
small that the interaction of quasiparticles with the condensate becomes smaller than their
self-interaction. In this paper we do not address the question of the order of the transition in
the presence of higher-order interactions, which turns out to be rather complex. One of the
reasons for that is that the order of the transition in the noninteracting case is, in some sense,
undefined. Actually, as soon as the pressure at the BE transition (now in the noninteracting
case) is reached at constant temperature, for any density larger than the critical density, the
pressure and the chemical potential keep their value at the transition. Therefore, according to
the general principles of phase equilibria, any phase with a density larger than the critical one
can coexist with any other one also at a density larger than the critical density. This degeneracy
explains that profound changes may be brought about by a small perturbation, as the one due
to the interaction in a dilute gas.

2. Thermodynamics of the dilute Bose gas with an energy perturbed to first order

We shall discuss first the calculation exposed by Huang [6], assuming (something that we
shall discuss later on) that the interaction is a perturbation to the energy of the noninteracting
particles. Accordingly, the first correction to the energy coming from the interaction is assumed
to be given by terms that are diagonal in states with a fixed number of particles at each
momentum: the unperturbed energy operator itself is diagonal with respect to those states. As
shown in [6], this operator with the first-order perturbation is given by

H [np] =
∑
p

p2

2m
np +

4πf h̄2

m�

(
N2 − n

2
0

2

)
(1)

wheref is the positive scattering length that charactzerizes the potential (we assume the
temperature low enough to yield only s-wave scattering in the long wave limit),np is the
number of particles of momentump, all particles being identical and of massm. Furthermore
� is the total volume,N the total number of particles andn0 the number of particles in
the ground state. In section 3, we recover (1) by analysing the full energy operator. The
thermodynamic sum can be carried explicitly with this energy. This model, as well as some
variants without the off-diagonal terms but with a more general interaction, have been studied
extensively since the early work of Huanget al [4], leading in particular to some rigorous
results [11–13].

The canonical partition function associated to the energy written in (1) reads

QN =
∑
np

exp

[
− 1

kBT

(∑
p

p2

2m
np +

4πf h̄2

m�

(
N2 − n

2
0

2

))]
with kB the Boltzmann constant andT the absolute temperature. This partition function is
computed by performing first the partial sum

∑
np

over states withp different from zero,
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at
∑′

p np = N − n0 fixed and equal toN ′ (hereafter
∑′

p ≡
∑

p 6=0). This sum is as in a
noninteracting BE gas and the result is borrowed from the standard Bose calculation:

QN ′ =
∑
np,p 6=0

exp

[
− 1

kBT

∑
p

′ p2

2m
np

]

= exp

[
− µ(N − n0)

kBT
− �

(2πh̄)3

∫
d3p ln(1− e−

(ε(p)−µ)
kB T )

]
whereε(p) = p2

2m . The chemical potentialµ is the Lagrange multiplier associated toN ′, and

is related to it by the condition∂QN ′
∂µ
= 0, which gives

ρ ′(µ) = 1

(2πh̄)3

∫
d3p

1

e
(ε(p)−µ)
kB T − 1

≡
(
mkBT

2πh̄2

)3/2 ∞∑
k=1

eµk/kBT

k3/2
(2)

whereρ ′(µ) = N ′
�

is the number density of the particles outside of the condensate (the ‘thermal
particles’ later on). The next step consists in tracing over the momentumless particle, that is
to sum over all values ofn0 keepingN fixed:

QN =
∑
n0

exp

{
− 1

kBT

[
4πf h̄2

m�

(
N2 − n

2
0

2

)
+µ(N − n0) +

�kBT

(2πh̄)3

∫
d3p ln(1− e−

(ε(p)−µ)
kB T )

]}
. (3)

This sum is centred around a saddle atn̄0, found by looking for the root of∂ lnQN

∂n̄0
= 0,

giving the condition4πf h̄2

mω
n̄0 + µ = 0. Note that the chemical potentialµ depends onn0

through equation (2), although the contribution to∂ lnQN

∂n̄0
proportional to∂µ

∂n0
vanishes identically

because of (2). The partition function (3) can be approximated in the thermodynamic limit by
the value ofQN at its maximum, that is for̄n0. The total free energy is, in the thermodynamic
limit,

−kBT ln(QN) = µ(N − n̄0) +
4πf h̄2

m�

(
N2 − n̄

2
0

2

)
+
�kBT

(2πh̄)3

∫
d3p ln(1− e−

(ε(p)−µ)
kB T ). (4)

This quantity is stationary under variations aroundn̄0 atN fixed; physically, this means that at
equilibrium there is no exchange of mass between the condensate and the thermal particles, as
was shown by Landau [14]. The relation between the chemical potential (Lagrange multiplier)
imposing the number of particles outside the condensate (and inside as well, becauseN is
fixed), and the particle density of the condensate is, as before,

µ +
4πf h̄2

m
ρs = 0 (5)

whereρs = n̄0/� = ρ − ρ ′(µ) andρ = N
�

is the total number density, an imposed quantity.
Equation (5) together with the above relation (2) forρ ′(µ) solves the problem, although

one hasρ as a function ofρs . One writes the latter as

ρ̃ − ρ̃s = 4√
πζ(3/2)

∫ ∞
0
x2 dx

1

ex2+αρ̃s − 1
≡ 1

ζ(3/2)

∞∑
k=1

e−αρ̃sk

k3/2
(6)

whereζ(s) is is the Riemannζ function, equal to
∑∞

k=1
1
ks

when the series converges and where
ρ̃ = ρ

ρc
, ρ̃s standing forρs

ρc
whereρc is the number density at the transition in the noninteracting

BE case:

ρc =
(
mkBT

2πh̄2

)3/2

ζ

(
3

2

)
.
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Finally,

α = 2(ζ( 3
2))

2/3fρ1/3
c

is the only dimensionless parameter. It is, actually, the small parameter of the problem. Because
it is proportional to the scattering lengthf , we shall consider later onf as the small parameter,
so that for instance any term of orderf 2 will be considered as small compared with another
one of orderf . This is because their dimensionless ratio should be actually proportional to
α times a constant of order 1. Equation (6) yieldsρ

ρc
as a function ofρs

ρc
as represented in the

figure 2.
An explicit representation ofρ

ρc
follows from the expansion for a nonintegers [15]:

∞∑
k=1

e−zk

ks
= 0(1− s)zs−1 +

∞∑
r=0

(−z)r
0(r + 1)

ζ(s − r). (7)

Putting this into (6), one gets the following expansion forαρ̃s a small quantity:

ρ̃ − ρ̃s = 1− 2
√
π

ζ(3/2)
(αρ̃s)

1/2 − ζ(1/2)
ζ(3/2)

(αρ̃s) + · · · .
Writing now δρ̃ = ρ̃ − 1, one obtains up to the dominant term

(δρ̃ − ρ̃s)2 = 4π

ζ(3/2)2
αρ̃s.

Huang replaces this relation byδρ̃ = ρ̃s , which represents well the dominant term far
from the transition, wherẽρs may become small and of the same order asδρ̃. Near threshold,
one sees thatδρ̃ andρ̃s scale asα.

Finally, we shall derive the equation of state (that is a relation betweenρ and the pressure
P ). This is obtained from the general expression for the pressure, i.e. minus the derivative of
the free energy (4) with respect to the volume� atT andN constant:

P = 4πf h̄2

m

(
ρ2 − ρ

2
s

2

)
− kBT

(2πh̄)3

∫
d3p ln(1− e−

(ε(p)−µ)
kB T )

= 4πf h̄2

m

(
ρ2 − ρ

2
s

2

)
+

Pc

ζ(5/2)

∞∑
k=1

e−αρ̃sk

k5/2

wherePc is the pressure at the BE transition in a perfect gas:

Pc = kBT
(
mkBT

2πh̄2

)3/2

ζ

(
5

2

)
.

The pressure depends explicitly onρ andρs , however, it can be written as a function of the
total densityρ only. The dimensionless ratioP/Pc reads, in general,

P/Pc = α ζ(3/2)
ζ(5/2)

(
ρ̃2 − ρ̃

2
s

2

)
+

1

ζ(5/2)

∞∑
k=1

e−αρ̃sk

k5/2
. (8)

which gives at first order inα:

P̃ = 1− ζ(3/2)
ζ(5/2)

αρ̃s +
ζ(3/2)

ζ(5/2)
α

(
ρ̃2 − ρ̃

2
s

2

)
.

Combining this with the relation betweeñρs andρ one gets that the transition is first order
becauseP is a multivalued function ofρ near the transition, as can be seen in figure 1. An
equal-area Maxwell construction (see figure 2 in [4]) near the transition point in theP/Pc, 1/ρ̃
coordinates shows that the jump inρ from one stable phase to the other is of orderαρc near
ρc, the pressure variation being of orderαPc.
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Figure 1. The equilibrium pressureP/Pc as a function of the specific volumev = ρc
ρ

. Here
α = 0.1.

3. Thermodynamics of the dilute Bose gas at the Bogoliubov order

The results exposed in the previous section are qualitatively correct, in the sense that the order
of magnitude of the first-order corrections to macroscopic quantities likeP andρs are correct,
at least not too close to the transition point. But the calculations of section 2 do not capture
quantitatively the thermodynamical properties at first order inf . This is because they miss
the effect of the Bogoliubov renormalization on the energy spectrum at low momenta. It
turns out that, at finite temperature, this Bogoliubov renormalization is quite different from the
original zero-temperature renormalization. One essential ingredient of the derivation above
was the assumption that the interaction appears as a first-order perturbation. This is indeed
so, for the bulk of the energy spectrum. However, this is not quite true for that part of the
spectrum responsible for the expansion ofρ ′(µ) nearµ = 0. The first nontrivial and relevant
term (beyondρc) is of order(−µ)1/2 and comes from the contribution to the integral over
the momenta such thatp2/2m is of orderµ, in other words such thatp is of order(−µ)1/2.
Those momenta are small enough to make the interaction and kinetic energy of the same order.
This raises the question of the magnitude of the kinetic versus the interaction energy for this
range of momenta. For those particles, as for any particle, the order of magnitude of the
interaction energy with the condensate (we shall come to the question of the interaction energy
with the other thermal particles later) follows at once from Bogoliubov theory. According to
Bogoliubov [1], the energy of the quasiparticles of momentump is given by

εB(p) =
√
p4

4m2
+

4πh̄2f

m2
ρsp2.

From this formula together with the above expression (5) forµ and for momenta such that
p2

2m ≈ −µ, the kinetic part of the Bogoliubov energy( p
2

2m) and the energy of interaction with

the condensate( 4πh̄2fρs
m

) are of the same order of magnitude. Therefore, the interaction cannot
be considered as a perturbation in this range of momenta, and practically, all the calculations
of section 2 must be reconsidered there, because the interaction was assumed to be a uniformly
small pertubation to the kinetic energy. The starting point of a theory following the principles
outlined by Bogoliubov at zero temperature is the splitting of the interaction part of the energy
into pieces involving the condensate and pieces not involving this condensate. Leta†

α(aα) be
the creation(destruction) operator in the state of momentumpα. The operatorsa with different
subscripts commute, although the commutation rule for the same subscript isaa†− a†a = 1.
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The interaction part of the energy operator reads

Vint = 4πf h̄2

2m�

∑
α,β,ν,ω

a†
αa

†
βaνaωδ(pα + pβ − pν − pω)

where theδ-function is the Kronecker discrete function, equal to zero if its argument is not zero
and to 1 otherwise. The sum

∑
α,...,ω may be decomposed in various terms, depending on the

way in which the condensate wavefunction enters into those terms. As shown by Bogoliubov,
if there is condensation in the state of zero momentum, the operators of index zero become c-
numbers:a0 = 90�

1/2, a†
0 = 90�

1/2, where90 is the ground state wavefunction, practically
a complex constant here,90 being its complex conjugate.

Let us derive first the expression (1) for the interaction energy from the above formula
for Vint. At first order, this interaction energy is the average value ofVint computed with
the unperturbed equilibrium ensemble. In this ensemble the occupation numbers at different
momentap are uncorrelated. The terms with nonzero momentum are finite quantities in the
thermodynamic limit. Therefore, the terms such that all four momentaα, . . . , ω are equal and
not zero yield a finite contribution toVint, negligible because we expect a contribution of order
� (orN ′) in the thermodynamic limit. In the absence of condensate, the average value ofVint

is therefore equal to

2πf h̄2

m�
2
∑
α

a†
αaα

∑
β

a
†
βaβ

where the factor 2 in front of the sum is for the two possibilities of chosing eitherν or ω
equal toα (and soω or ν equal toβ) to satisfy the Kronecker condition. But if the state
of momentum zero is macroscopically occupied, this factor 2 should not be there, because it
amounts to counting twice the contribution

2πf h̄2

m�
a

†
0a

†
0a0a0.

Therefore to avoid this double counting, one subtracts once this last contribution, which yields
the sought value of the average value ofVint:

〈Vint〉 = 4πf h̄2

2m�
(2N2 − n2

0)

the result used previously in (1). By singling out the ground state contribution to the sum over
the momenta that givesVint, one gets four types of terms:

(1) The terms such that all four wavenumberspα,...,ω differ from zero. The corresponding
contribution toVint, denoted asVint,1, can be computed as follows. This contribution
is a small perturbation, and it is estimated by assuming that it is equal to its average
value on the unperturbed state (a direct consequence of the general formula for estimating
the first-order perturbation, as presented in the previous section), that is for the pure BE
system. This amounts to neglecting the quantum correlations between states of different
wavenumbers. If one does this the only surviving terms in the sum are such that indices
are paired in such a way that the same index appears once in a creation and in a destruction
operator:

Vint,1 = 2πf h̄2

m�

∑
α,...,ω,all 6=0

a†
αa

†
βaνaωδ(pα + pβ − pν − pω)

≈ 4πf h̄2

m�

(∑
α 6=0

a†
αaα

)(∑
β 6=0

a
†
βaβ

)
= 4πf h̄2

m�
(N − n0)

2.
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The Bogoliubov renormalization does not change this result at the dominant order, because
does change the contribution to energy of particles with a small momentum only, which
is a small proportion of the total number of particles. Therefore, as we are considering
the dominant corrections, we can safely use the above formula forVint,1 when estimating
the perturbation brought byVint,1 to the thermodynamical properties.

(2) The terms such that one wavenumber is zero:4πf h̄2

m�

∑′
α,ν,ω(a

†
0a

†
αaνaω +a0a

†
νa

†
ωaα)δ(pα−

pν − pω).
(3) The terms such that two wavenumbers are zero:2πh̄2f

m�

∑
p
′
(a2

0a
†
pa

†
−p + a†

0
2
apa−p +

4|a0|2a†
pap). These are precisely the ones kept by Bogoliubov and considered below.

(4) The terms with three zero wavenumbers do not exist because of the Kronecker delta.

(5) Finally, the ones with four zero wavenumbers:2πh̄2f

m�
|a0|4.

We are going to study now the thermodynamics of a system at the ‘Bogoliubov’ order, that
is with the interaction just listed in (1)–(5). It turns out that interaction (2) is always negligible
compared with the other interaction terms except near the transition. This is because it has
the lowest order ina0, with respect to any other term involvinga0, and so becomes the most
important term involvinga0 as the superfluid density tends to zero. However, outside this
neighbourhood of the transition, this term may be neglected. In a regular perturbation scheme,
the effect of (2) would require one to go to the second order inα (because any combination
cubic in creation–annihilation operators brings no first-order contribution), although we shall
deal with terms of at most first order inα.

Therefore, the energy operator that we are going to use can be written as

H =
∑
p

ε(p)a†
pap +

2πh̄2f

m�
[2(N − n0)

2 + n2
0]

+
2πh̄2f

m

∑
p

′
(92

0a
†
pa

†
−p +9

2
0apa−p + 4|90|2a†

pap). (9)

Notice that when neglecting the off-diagonal terms one recovers formula (1) of section 2
because|90|2 ≡ ρs . Several studies have been devoted to situations where the energy operator
is quite similar to the one given in (9), see [10,13]. They are restricted, however, to cases where
the energy is exactly quadratic in the operatorsap anda†

p, withp 6= 0, not the case of our energy

operator, because of the contribution2πh̄2f

m�
2(N − n0)

2. This last contribution is necessary to
get consistently all the interaction effects at first order in the smallness parameterα. Therefore,
there are important differences between the formulae deduced from our consistent approach
and the results of [10]. In particular, the explicit relation between the chemical potential
and the number densities (of the condensate and of the excited particles) are quite different.
Following now the same general method as outlined in section 2, we are going to compute

the partition functionQB
N = Tr(e−

H
kBT ), for a given total number of particlesN in a box of

volume�. This does not lead to any difficulty, in principle, because the energy operator is
a function ofn0 andN and a quadratic functional of the operatorsa†

p andap. However, the
calculation is not that straightforward, and we shall decompose the main steps. The first step
consists in computing the contribution to the partition function that depends explicitly on the
operatorsa†

p andap, with a fixed total number of particles in the condensate. To obtainQB
N ′ ,

we compute the corresponding grandcanonical partition functionQB(µ) = ∑
N ′ e
− µN ′
kB T QB

N ′ ,
and then writeQB

N ′ as exp(+µN
′

kBT
) times this grandcanonical partition function, the fluctuations

ofN ′ being neglected. The formal expression ofQB(µ) is the exponential of a quadratic form
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in the creation–annihilation operators:

QB(µ) = Tr exp

[
− 1

kBT

(∑
p

′
(ε(p)− µ)a†

pap

+
2πh̄2f

m

∑
p

′
(92

0a
†
pa

†
−p +9∗20 apa−p + 2|90|2a†

pap)

)]
. (10)

We have included the chemical potential termµN ′ = µ∑p
′
a†
pap together with the standard

kinetic energy term, whence the combinationε(p)−µ in the term diagonal in the occupation
numbersnp = a†

pap. On the other hand, the Bogoliubov transformation will require a factor

2 only in the diagonal part of the interaction term, the remaining term4πh̄2f

m
|90|2

∑
p
′
a†
pap is

a constant atN ′ fixed and so will be included in the full free energy at the end in the form
4πh̄2f

m�
n0(N − n0).

The full energy operator is not diagonal in the representation on the basis of states with
a fixed number of particles at each momentum: it is diagonal in states at a fixed number of
quasiparticles. Therefore, this Bogoliubov theory cannot consider as a first-order perturbation
the interaction operator diagonal in states at a fixed number of particles, which was the starting
point of the calculation in the previous section. Another consequence of this noncommutation
between the quasiparticles’ and particles’ operators is that one has to be careful when taking
into account the Lagrange constraint of a fixed number of particles (not of quasiparticles)
when computing the contribution of the thermally excited states to the partition function. Let
us point out that [5] assumes that the total number of particles and of quasiparticles are the
same (equation (19) in [5]), something that does not follow from the operator algebra. We
have just shown that the Lagrange constraint for the number of particles amounts formally to
add−µ to the energy per particle. Now the resulting operator (that is the energy minusµN ′)
can be diagonalized as done by Bogoliubov, but by replacing everywhereε(p) by ε(p) − µ
in the final expression. We shall compute the trace in the grand canonical ensemble and in the
basis where the Hamiltonian is diagonal, that is after a Bogoliubov transformation. Formally
this last trace is over an arbitrary number of quasiparticles. The result is

QB(µ) = exp

[
− µ(N − n0)

kBT
− �

(2πh̄)3

∫
d3p ln(1− e−εB(p,µ,ρs )/kBT )

]
where

εB(p, µ, ρs) =
√(

p2

2m
− µ

)2

+ 2

(
p2

2m
− µ

)
4πf h̄2ρs

m
. (11)

In this expression forQB
N ′(µ), we have neglected the contribution coming from the change in

the ground state energy arising from the Bogoliubov transformation, as it would yield higher-
order corrections only. This kind of correction is responsible for the term of orderα3/2 (in our
notation) in the expansion of the ground state energy (see the second-order term in equation (17)
of [5] for instance, witha proportional to ourα), and would similarly yield corrections, though
smaller than the one used in this paper. The density of thermal particles follows by deriving
the free energy with respect toµ:

ρ ′(µ) = − 1

(2πh̄)3

∫
d3p

1

e
εB (p,µ,ρs )

kB T − 1

∂εB(p, µ, ρs)

∂µ
. (12)

It is important to notice at this point that the thermodynamical expression we are using
may look different from what is in the literature because the chemical potential enters in a
nontrivial way in quantities related to the quasiparticles. It is true that if the quasiparticles
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Figure 2. The condensate densityρs/ρc as as
a function of the specific volumev = ρc

ρ
. The

full curve is the calculation up to first order
(equation (6)), while the dotted curve is the
numerical solution of (14) and (16). We have
takenα = 0.1.

were phonons in a solid they would be associated to the conservation of energy only, whence
their thermodynamics would depend on the temperature only, and no chemical potentials
would be involved. However, the quasiparticles in a condensed Bose gas are not independent
of the true particles: changing the occupation number of quasiparticles changes the occupation
number of particles themselves. Therefore, the thermodynamics of quasiparticles involve both
the temperature (related to the energy conservation) and in a nontrivial way the chemical
potential related to the conservation of the number of particles. The total partition function at
this Bogoliubov approximation is

QB
N =

∑
n0

exp

{
− 1

kBT

[
µ(N − n0)

+
2πh̄2f

m�
[(N − n0)

2 +N2] +
kBT�

(2πh̄)3

∫
d3p ln(1− e−

εB (p,µ,ρs )

kB T )

]}
. (13)

As in the previous section one getsn̄0 by looking for the saddle point of the sum (note
thatεB(p, µ, ρs) depends explicitly onn0 becausen0 = ρs�):

µ +
4πh̄2f

m
(ρ − ρs) = 1

(2πh̄)3

∫
d3p

1

e
εB (p,µ,ρs )

kB T − 1

∂εB

∂ρs
. (14)

Equations (12) and (14) solve, in principle, the problem. Obtaining∂εB
∂µ

and ∂εB
∂ρs

from (11) and
putting the result into (12) one transforms (14) into

µ̃ ≡ µ

kBT
= −α2ρ̃s

4√
πζ(3/2)

∫ ∞
0

1

eε̂(x) − 1

x2 dx

ε̂(x)
(15)

whereε̂(x) =
√
(x2 − µ̃)2 + 2α(x2 − µ̃)ρ̃s . Equation (12) becomes

ρ̃ = ρ̃s +
µ̃

α
+

4√
πζ(3/2)

∫ ∞
0

1

eε̂(x) − 1

(x2 − µ̃)x2 dx

ε̂(x)
. (16)

We have solved numerically these coupled equations forα = 0.1. The relation betweeñρs
andµ̃ is derived from (15).

Then one gets directlỹρ as a function of̃µ. We have plotted̃ρs versus 1/ρ̃ as a parametric
plot of µ̃ in figure 2.

Near the BE transitionρs andµ vanish. Their relation follows from the singular behaviour
of the integral (15) nearx = 0:∫ ∞

0

x2 dx

(x2 − µ̃)(x2 − µ̃ + 2αρ̃s)
= π

2

√
2αρ̃s − µ−√−µ

2αρ̃s
.



700 Y Pomeau and S Rica

Figure 3. The equilibrium pressureP/Pc as
a function of the specific volumev = ρc

ρ
.

As before, the full curve was drawn with
equation (8), and the dotted curve with (18).
We have takenα = 0.1.

Near the transition (ρs andµ close to zero) one has

(−µ̃)3/2 =
√
π

ζ(3/2)
α2ρs (17)

therefore up to Bogoliubov order one gets thatµ̃ ∼ −ρ̃2/3
s � ρ̃s near the transition, showing

that in this range the dominant order is not the one found by the calculation of section 2. Under
the same assumptions, one approximates (16) by

δρ̃ = ρ̃ − 1= ρ̃s + µ̃/α −
√
π

ζ(3/2)

√
2αρ̃s − µ̃.

One sees from here thatδρ̃ andρ̃s scales asα.
Finally, we obtain the equation of state

P/Pc = α ζ(3/2)
2ζ(5/2)

((ρ̃ − ρ̃s)2 + ρ̃2)− 4√
πζ(5/2)

∫ ∞
0

ln(1− e−ε̂(x))x2 dx (18)

which is plotted in figure 3.

4. Conclusions

Once the Bogoliubov transformation has been made, we obtain that at the dominant order (that
is for f orα small), the condition that the total partition function is stationary under exchange
of particles between the condensate and the thermal particles nearρs = 0 isµ ∼ −α4/3ρ

2/3
s ,

different from the result in section 2.
The result of these considerations is a consistent derivation of the first correction to the

thermodynamic parameters of the BE gas, arising from the short-range interaction, in the dilute
gas limit.

To summarize:

(1) The chemical potentialµ is given nearρs = 0 at the dominant order byµ ∼ −α4/3ρ
2/3
s ,

a quantity much larger thanαρs asρs vanishes withα fixed. The above relation for the
chemical potential is valid ifρs is small, but much larger thanαρ. If ρs becomes less than
αρs , then other terms than the ones we have considered here to get the energy operator of
equation (9) become relevant.

(2) Among the important effects of the Bogoliubov renormalization is to change the
momentum distribution for small momenta. The momentum distribution of quasiparticles
at small momenta, has the form

− 1

(2πh̄)3
1

e
εB (p,µ,ρs )

kB T − 1

∂εB(p, µ, ρs)

∂µ
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where the various quantities are explained in the body of the text. This momentum
distribution cannot be cast in the form of a simple Bose factor, which means probably
that a kinetic theory consistent with the present equilibrium distribution should have a
structure far more complex than the classical Boltzmann–Nordheim kinetic theory [16],
a question we plan to investigate actively.
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